Indoor Mobile Localization System and Stabilization of Localization Performance using Pre-filtering
نویسندگان
چکیده
In this paper, we present the practical application of an Unscented Kalman Filter (UKF) for an Indoor Mobile Localization System using ultrasonic sensors. It is true that many kinds of localization techniques have been researched for several years in order to contribute to the realization of a ubiquitous system; particularly, such a ubiquitous system needs a high degree of accuracy to be practical and efficient. Unfortunately, a number of localization systems for indoor space do not have sufficient accuracy to establish any special task such as precise position control of a moving target even though they require comparatively high developmental cost. Therefore, we developed an Indoor Mobile Localization System having high localization performance; specifically, the Unscented Kalman Filter is applied for improving the localization accuracy. In addition, we also present the additive filter named ‘Pre-filtering’ to compensate the performance of the estimation algorithm. Pre-filtering has been developed to overcome negative effects from unexpected external noise so that localization through the Unscented Kalman Filter has come to be stable. Moreover, we tried to demonstrate the performance comparison of the Unscented Kalman Filter and another estimation algorithm, such as the Unscented Particle Filter (UPF), through simulation for our system.
منابع مشابه
Map-merging in Multi-robot Simultaneous Localization and Mapping Process Using Two Heterogeneous Ground Robots
In this article, a fast and reliable map-merging algorithm is proposed to produce a global two dimensional map of an indoor environment in a multi-robot simultaneous localization and mapping (SLAM) process. In SLAM process, to find its way in this environment, a robot should be able to determine its position relative to a map formed from its observations. To solve this complex problem, simultan...
متن کاملIndoor Positioning and Pre-processing of RSS Measurements
Rapid expansions of new location-based services signify the need for finding accurate localization techniques for indoor environments. Among different techniques, RSS-based schemes and in particular oneof its variants which is based on Graph-based Semi-Supervised Learning (G-SSL) are widely-used approaches The superiority of this scheme is that it has low setup/training cost and at the same ti...
متن کاملA Robust Extended H∞ Filtering Approach to Multi-Robot Cooperative Localization in Dynamic Indoor Environments
Multi-robot cooperative localization serves as an essential task for a team of mobile robots to work within an unknown environment. Based on the real-time laser scanning data interaction, a robust approach is proposed to obtain optimal multi-robot relative observations by using the Metric-based Iterative Closest Point (MbICP) algorithm, which makes it possible to utilize the surrounding environ...
متن کاملA Rssi Based Localization Algorithm for WSN Using a Mobile Anchor Node
Wireless sensor networks attracting a great deal of research interest. Accurate localization of sensor nodes is a strong requirement in a wide area of applications. In recent years, several techniques have been proposed for localization in wireless sensor networks. In this paper we present a localization scheme with using only one mobile anchor station and received signal strength indicator tec...
متن کاملIndoor Positioning using the IEEE 802.11 Infrastructure
We propose a new indoor localization method which can be used to track a mobile node . Our method uses only the received signal strengths as input information . In addition our approach doesn’t require any prior knowledge of the mobile node’s motion and therefore doesn’t use a cinematic motion model for tracking the mobile node. We discuss in detail the features of our approach and its resultin...
متن کامل